Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.158
Filtrar
1.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557424

RESUMO

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Lamiaceae , Humanos , Peptídeos beta-Amiloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Flavonoides/farmacologia , Complemento C3/metabolismo , Complemento C3/farmacologia , Complemento C3/uso terapêutico , Doenças Neuroinflamatórias , Astrócitos/metabolismo , Donepezila/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Citocinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade
2.
Neurosci Lett ; 825: 137708, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38438068

RESUMO

Dehydroeffusol, a major phenanthrene in Juncus effusus, protects neurodegeneration induced by intracellular Zn2+ ferried by extracellular amyloid ß1-42 (Aß1-42). Here we focused on adrenaline ß receptor activation and the induction of metallothioneins (MTs), intracellular Zn2+-binding proteins to test the protective mechanism of dehydroeffusol. Isoproterenol, an agonist of adrenergic ß receptors elevated the level of MTs in the dentate granule cell layer 1 day after intracerebroventricular (ICV) injection. When Aß1-42 was injected 1 day after isoproterenol injection, pre-injection of isoproterenol protected Aß1-42 toxicity via reducing the increase in intracellular Zn2+ after ICV injection of Aß1-42. On the basis of the effect of increased MTs by isoproterenol, dehydroeffusol (15 mg/kg body weight) was orally administered to mice once a day for 2 days. On day later, dehydroeffusol elevated the level of MTs and prevented Aß1-42 toxicity via reducing Aß1-42-mediated increase in intracellular Zn2+. In contrast, propranolol, an antagonist of adrenergic ß receptors reduced the level of MTs increased by dehydroeffusol, resulting in invalidating the preventive effect of dehydroeffusol on Aß1-42 toxicity. The present study indicates that blockage of MT synthesis via adrenaline ß receptor activation invalidates dehydroeffusol-mediated prevention of Aß1-42 toxicity. It is likely that MT synthesis via adrenaline ß receptor activation is beneficial to neuroprotection and that oral intake of dehydroeffusol preventively serves against the Aß1-42 toxicity.


Assuntos
Peptídeos beta-Amiloides , Metalotioneína , Fenantrenos , Camundongos , Animais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Epinefrina , Isoproterenol , Receptores Adrenérgicos beta , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo
3.
Biomolecules ; 14(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38540718

RESUMO

The amyloidogenic Aß peptides are widely considered as a pathogenic agent in Alzheimer's disease. Aß(1-42) would form aggregates of amyloid fibrils on the neuron plasma membranes, thus perturbing neuronal functionality. Conflicting data are available on the influence of bilayer order on Aß(1-42) binding to membranes. In the present study, a biophysical approach was used in which isothermal calorimetry and surface pressure measurements were applied to explore the interaction of Aß(1-42) in either monomeric, oligomeric, or fibrillar form with model membranes (bilayers or monolayers) in the liquid-ordered state that were either electrically neutral or negatively charged. In the latter case, this contained phosphatidic acid, cardiolipin, or ganglioside. The calorimetric studies showed that Aß(1-42) fibrils, oligomers, and monomers could bind and/or be inserted into bilayers, irrespective of electric charge, in the liquid-ordered state, except that monomers could not interact with electrically neutral bilayers. The monolayer studies in the Langmuir balance demonstrated that Aß(1-42) aggregation hindered peptide insertion into the monolayer, hindered insertion in the decreasing order of monomer > oligomer > fibril, and that lipid composition did not cause large differences in insertion, apart from a slight facilitation of monomer and oligomer insertion by gangliosides.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Gangliosídeos
4.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473713

RESUMO

Preeclampsia (PE) is a unique pregnancy disorder affecting women across the world. It is characterized by the new onset of hypertension with coexisting end-organ damage. Although the disease has been known for centuries, its exact pathophysiology and, most importantly, its prevention remain elusive. The basis of its associated molecular changes has been attributed to the placenta and the hormones regulating its function. One such hormone is chromogranin A (CgA). In the placenta, CgA is cleaved to form a variety of biologically active peptides, including catestatin (CST), known inter alia for its vasodilatory effects. Recent studies indicate that the CST protein level is diminished both in patients with hypertension and those with PE. Therefore, the aim of the present paper is to review the most recent and most relevant in vitro, in vivo, and clinical studies to provide an overview of the proposed impact of CST on the molecular processes of PE and to consider the possibilities for future experiments in this area.


Assuntos
Hipertensão , Pré-Eclâmpsia , Humanos , Feminino , Cromogranina A/metabolismo , Fragmentos de Peptídeos/metabolismo
5.
Eur J Med Chem ; 269: 116299, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479167

RESUMO

Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 µM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Animais , Ratos , Enfuvirtida/farmacologia , Enfuvirtida/metabolismo , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo
6.
Nat Commun ; 15(1): 1297, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351005

RESUMO

Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease characterized by the extracellular deposition of amyloid plaques. Investigation into the composition of these plaques revealed a high amount of amyloid-ß (Aß) fibrils and a high concentration of lipids, suggesting that fibril-lipid interactions may also be relevant for the pathogenesis of AD. Therefore, we grew Aß40 fibrils in the presence of lipid vesicles and determined their structure by cryo-electron microscopy (cryo-EM) to high resolution. The fold of the major polymorph is similar to the structure of brain-seeded fibrils reported previously. The majority of the lipids are bound to the fibrils, as we show by cryo-EM and NMR spectroscopy. This apparent lipid extraction from vesicles observed here in vitro provides structural insights into potentially disease-relevant fibril-lipid interactions.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Microscopia Crioeletrônica , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Lipídeos
7.
Nat Commun ; 15(1): 1296, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351257

RESUMO

Amyloid ß (Aß) ion channels destabilize cellular ionic homeostasis, which contributes to neurotoxicity in Alzheimer's disease. The relative roles of various Aß isoforms are poorly understood. We use bilayer electrophysiology, AFM imaging, circular dichroism, FTIR and fluorescence spectroscopy to characterize channel activities of four most prevalent Aß peptides, Aß1-42, Aß1-40, and their pyroglutamylated forms (AßpE3-42, AßpE3-40) and correlate them with the peptides' structural features. Solvent-induced fluorescence splitting of tyrosine-10 is discovered and used to assess the sequestration from the solvent and membrane insertion. Aß1-42 effectively embeds in lipid membranes, contains large fraction of ß-sheet in a ß-barrel-like structure, forms multi-subunit pores in membranes, and displays well-defined ion channel features. In contrast, the other peptides are partially solvent-exposed, contain minimal ß-sheet structure, form less-ordered assemblies, and produce irregular ionic currents. These findings illuminate the structural basis of Aß neurotoxicity through membrane permeabilization and may help develop therapies that target Aß-membrane interactions.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Tirosina , Canais Iônicos/química , Solventes , Fragmentos de Peptídeos/metabolismo
8.
J Biol Chem ; 300(3): 105716, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311174

RESUMO

FUS and TDP-43 are two self-adhesive aggregation-prone mRNA-binding proteins whose pathological mutations have been linked to neurodegeneration. While TDP-43 and FUS form reversible mRNA-rich compartments in the nucleus, pathological mutations promote their respective cytoplasmic aggregation in neurons with no apparent link between the two proteins except their intertwined function in mRNA processing. By combining analyses in cellular context and at high resolution in vitro, we unraveled that TDP-43 is specifically recruited in FUS assemblies to form TDP-43-rich subcompartments but without reciprocity. The presence of mRNA provides an additional scaffold to promote the mixing between TDP-43 and FUS. Accordingly, we also found that the pathological truncated form of TDP-43, TDP-25, which has an impaired RNA-binding ability, no longer mixes with FUS. Together, these results suggest that the binding of FUS along nascent mRNAs enables TDP-43, which is highly aggregation-prone, to mix with FUS phase to form mRNA-rich subcompartments. A functional link between FUS and TDP-43 may explain their common implication in amyotrophic lateral sclerosis.


Assuntos
Esclerose Amiotrófica Lateral , Proteínas de Ligação a DNA , Proteína FUS de Ligação a RNA , RNA , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
9.
Neurochem Res ; 49(5): 1166-1187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38326524

RESUMO

The accumulation of amyloid-beta (Aß) peptides is a crucial factor in the neuronal degeneration of Alzheimer's disease (AD). The current study investigated the underlying neuroprotective mechanisms of shrimp shell extract (SSE) and liposome-encapsulated SSE (SSE/L) against Aß1-42-induced neuronal damage and death in rats. Intracerebroventricular infusion of Aß1-42 effectively induced memory decline, as observed in a reduction of the rat's discriminating ability in the novel object recognition and novel object location tasks. Oral pretreatment with 100 mg/kg of SSE demonstrated no preventive effect on the memory decline induced by Aß1-42 infusion. However, treatment with SSE/L 100 mg/kg BW effectively attenuated memory deficits in both behavioral assessments following two and four weeks after Aß1-42 infusion. Moreover, SSE/L exerted neuroprotective effects by reducing lipid peroxidation and increasing Nrf2/HO-1 expression. There was a significant decrease in Iba1 and GFAP (biomarkers of microglia and astrocyte activity, respectively), as well as a decrease in the levels of NF-κB expression and the inflammatory cytokines TNF-α and IL-6 in the cortical and hippocampal tissues. Treatment with SSE/L also reduced the pro-apoptotic proteins Bax and cleaved caspase-3 while raising the anti-apoptotic protein Bcl2. In addition, the beneficial effects of SSE/L were along with the effects of a positive control commercial astaxanthin (AST). The findings of this study indicated that SSE/L provided neuroprotective effects on Aß1-42-induced AD rats by ameliorating oxidative stress, neuroinflammation and apoptotic cell death. Therefore, SSE/L might be employed to prevent and mitigate Aß accumulation-induced neurotoxicity in AD.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Fármacos Neuroprotetores , Animais , Ratos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Lipossomos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Fragmentos de Peptídeos/metabolismo , Decápodes/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
10.
J Alzheimers Dis ; 98(1): 163-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393907

RESUMO

Background: Increased blood-brain barrier (BBB) permeability and amyloid-ß (Aß) peptides (especially Aß1-42) (Aß42) have been linked to Alzheimer's disease (AD) pathogenesis, but the nature of their involvement in AD-related neuropathological changes leading to cognitive changes remains poorly understood. Objective: To test the hypothesis that chronic extravasation of bloodborne Aß42 peptide and brain-reactive autoantibodies and their entry into the brain parenchyma via a permeable BBB contribute to AD-related pathological changes and cognitive changes in a mouse model. Methods: The BBB was rendered chronically permeable through repeated injections of Pertussis toxin (PT), and soluble monomeric, fluorescein isothiocyanate (FITC)-labeled or unlabeled Aß42 was injected into the tail-vein of 10-month-old male CD1 mice at designated intervals spanning ∼3 months. Acquisition of learned behaviors and long-term retention were assessed via a battery of cognitive and behavioral tests and linked to neuropathological changes. Results: Mice injected with both PT and Aß42 demonstrated a preferential deficit in the capacity for long-term retention and an increased susceptibility to interference in selective attention compared to mice exposed to PT or saline only. Immunohistochemical analyses revealed increased BBB permeability and entry of bloodborne Aß42 and immunoglobulin G (IgG) into the brain parenchyma, selective neuronal binding of IgG and neuronal accumulation of Aß42 in animals injected with both PT and Aß42 compared to controls. Conclusion: Results highlight the potential synergistic role of BBB compromise and the influx of bloodborne Aß42 into the brain in both the initiation and progression of neuropathologic and cognitive changes associated with AD.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Masculino , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/patologia , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo , Encéfalo/patologia , Peptídeos beta-Amiloides/metabolismo , Cognição , Imunoglobulina G/metabolismo
11.
Phytother Res ; 38(4): 1799-1814, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330236

RESUMO

Futoquinol (Fut) is a compound extracted from Piper kadsura that has a nerve cell protection effect. However, it is unclear whether Fut has protective effects in Alzheimer's disease (AD). In this study, we aimed to explore the therapeutic effect of Fut in AD and its underlying mechanism. UPLC-MS/MS method was performed to quantify Fut in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aß1-42, Aß1-40, p-Tau, oxidative stress, apoptosis, immune cells, and inflammatory factors were measured in Aß25-35-induced mice. The content of bacterial meta-geometry was predicted in the microbial composition based on 16S rDNA. The protein levels of HK II, p-p38MAPK, and p38MAPK were detected. PC-12 cells were cultured in vitro, and glucose was added to activate glycolysis to further explore the mechanism of action of Fut intervention in AD. Fut improved the memory and learning ability of Aß25-35 mice, and reduced neuronal damage and the deposition of Aß and Tau proteins. Moreover, Fut reduced mitochondrial damage, the levels of oxidative stress, apoptosis, and inflammatory factors. Fut significantly inhibited the expression of HK II and p-p38MAPK proteins. The in vitro experiment showed that p38MAPK was activated and Fut action inhibited after adding 10 mM glucose. Fut might inhibit the activation of p38MAPK through the glycolysis pathway, thereby reducing oxidative stress, apoptosis, and inflammatory factors and improving Aß25-35-induced memory impairment in mice. These data provide pharmacological rationale for Fut in the treatment of AD.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Lignanas , Animais , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apoptose , Cromatografia Líquida , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/farmacologia , Lignanas/farmacologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/metabolismo , Espectrometria de Massas em Tandem
12.
ACS Chem Neurosci ; 15(5): 1055-1062, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38379141

RESUMO

Histidine behaviors play critical roles in folding and misfolding processes due to the changes in net charge and the various N/N-H orientations on imidazole rings. However, the effect of histidine tautomerization (HIE (Nε-H, ε) and HID (Nδ-H, δ) states) behaviors on the edge chain of Aß mature fibrils remains inadequately understood, which is critical for finding a strategy to disturb fibril elongation and growth. In the current study, eight independent molecular dynamics simulations were conducted to investigate such impacts on the structural and aggregation properties. Our results from three different binding models revealed that the binding contributions of edge substitution effects are primarily located between chains 1 and 2. Histidine states significantly influence the secondary structure of each domain. Further analysis confirmed that the C1_H6//C1_E11 intrachain interaction is essential in maintaining the internal stability of chain 1, while the C1_H13//C2_H13 and C1_H14//C2_H13 interchain interactions are critical in maintaining the interchain stability of the fibril structure. Our subsequent analysis revealed that the current edge substitution leads to the loss of the C1_H13//C1_E11 intrachain and C1_H13//C2_H14 interchain interactions. The N-terminal regularity was significantly directly influenced by histidine states, particularly by the residue of C1_H13. Our study provides valuable insights into the effect of histidine behaviors on the edge chain of Aß mature fibril, advancing our understanding of the histidine behavior hypothesis in misfolding diseases.


Assuntos
Peptídeos beta-Amiloides , Histidina , Peptídeos beta-Amiloides/metabolismo , Histidina/química , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos
13.
Mol Nutr Food Res ; 68(5): e2300524, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356052

RESUMO

SCOPE: This study aims to investigate the antihypertensive effect of four chicken muscle-derived angiotensin (Ang)-converting enzymes (ACE)-regulating peptides: Val-Arg-Pro (VRP, ACE inhibition), Leu-Lys-Tyr and Val-Arg-Tyr (LKY and VRY, ACE inhibition and ACE2 upregulation), and Val-Val-His-Pro-Lys-Glu-Ser-Phe (VVHPKESF [V-F], ACE2 upregulation) in spontaneously hypertensive rats. METHODS AND RESULTS: Rats (12-14 weeks old) are grouped: 1) untreated, 2) VRP, 3) LKY, 4) VRY, and 5) V-F. Blood pressure (BP) is monitored using implantable telemetry technology. Over 18-day oral administration of 15 mg kg-1 body weight (BW) per day, only peptide V-F significantly (p < 0.05) reduces BP, decreases circulating Ang II, and increases ACE2 and Ang (1-7) levels, and enhances aortic expressions of ACE2 and Mas receptor (MasR). Peptide V-F also attenuates vascular inflammation (TNFα, MCP-1, IL-1α, IL-15, and cyclooxygenase 2 [COX2]) and vascular oxidative stress (nitrotyrosine). The gastrointestinal (GI)-degraded fragment of peptide V-F, Val-Val-His-Pro-Lys (VVHPK), is also an ACE2-upregulating peptide. Peptides VRP, LKY, and VRY do not reduce BP, possibly due to low bioavailability or other unknown reasons. CONCLUSIONS: Peptide V-F is the first ACE2-upregulating peptide, purified and fractionated from food proteins based on in vitro ACE2 upregulation, that reduces BP associated with the activation of ACE2/Ang (1-7)/MasR axis; the N-terminal moiety VVHPK may be responsible for the antihypertensive effect of V-F.


Assuntos
Enzima de Conversão de Angiotensina 2 , Galinhas , Ratos , Animais , Ratos Endogâmicos SHR , Pressão Sanguínea , Enzima de Conversão de Angiotensina 2/farmacologia , Galinhas/metabolismo , Anti-Hipertensivos/farmacologia , Peptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Angiotensina II/farmacologia , Músculos/metabolismo
14.
Nat Commun ; 15(1): 965, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302480

RESUMO

Protein misfolding can generate toxic intermediates, which underlies several devastating diseases, such as Alzheimer's disease (AD). The surface of AD-associated amyloid-ß peptide (Aß) fibrils has been suggested to act as a catalyzer for self-replication and generation of potentially toxic species. Specifically tailored molecular chaperones, such as the BRICHOS protein domain, were shown to bind to amyloid fibrils and break this autocatalytic cycle. Here, we identify a site on the Aß42 fibril surface, consisting of three C-terminal ß-strands and particularly the solvent-exposed ß-strand stretching from residues 26-28, which is efficiently sensed by a designed variant of Bri2 BRICHOS. Remarkably, while only a low amount of BRICHOS binds to Aß42 fibrils, fibril-catalyzed nucleation processes are effectively prevented, suggesting that the identified site acts as a catalytic aggregation hotspot, which can specifically be blocked by BRICHOS. Hence, these findings provide an understanding how toxic nucleation events can be targeted by molecular chaperones.


Assuntos
Doença de Alzheimer , Amiloide , Humanos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Domínios Proteicos , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo
15.
ACS Chem Neurosci ; 15(5): 944-954, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408014

RESUMO

Formation of amyloid-ß (Aß) fibrils is a central pathogenic feature of Alzheimer's disease. Cell-secreted extracellular vesicles (EVs) have been suggested as disease modulators, although their exact roles and relations to Aß pathology remain unclear. We combined kinetics assays and biophysical analyses to explore how small (<220 nm) EVs from neuronal and non-neuronal human cell lines affected the aggregation of the disease-associated Aß variant Aß(1-42) into amyloid fibrils. Using thioflavin-T monitored kinetics and seeding assays, we found that EVs reduced Aß(1-42) aggregation by inhibiting fibril elongation. Morphological analyses revealed this to result in the formation of short fibril fragments with increased thicknesses and less apparent twists. We suggest that EVs may have protective roles by reducing Aß(1-42) amyloid loads, but also note that the formation of small amyloid fragments could be problematic from a neurotoxicity perspective. EVs may therefore have double-edged roles in the regulation of Aß pathology in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Humanos , Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Vesículas Extracelulares/metabolismo
16.
PLoS One ; 19(2): e0297752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363755

RESUMO

The increased fragmentation caused by harsher ionization methods used during mass spectrometry such as electron ionization can make interpreting the mass spectra of peptides difficult. Therefore, the development of tools to aid in this spectral analysis is important in utilizing these harsher ionization methods to study peptides, as these tools may be more accessible to some researchers. We have compiled fragmentation mechanisms described in the literature, confirmed them experimentally, and used them to create a Python-based fragment prediction model for peptides analyzed under direct exposure probe electron ionization mass spectrometry. This initial model has been tested using single amino acids as well as targeted libraries of short peptides. It was found that the model does well in predicting fragments of peptides composed of amino acids for which the model is well-defined, but several cases where additional mechanistic information needs to be incorporated have been identified.


Assuntos
Aminoácidos , Fragmentos de Peptídeos , Fragmentos de Peptídeos/metabolismo , Aminoácidos/química , Elétrons , Espectrometria de Massas/métodos , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos
17.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338748

RESUMO

The aims of this study were to determine whether it is possible to use peptide microarrays obtained using the SPOT technique (immobilized on cellulose) and specific polyclonal antibodies to select fragments that reconstruct the outer sphere of proteins and to ascertain whether the selected peptide fragments can be useful in the study of their protein-protein and/or peptide-protein interactions. Using this approach, epidermal growth factor (EGF) fragments responsible for the interaction with the EGF receptor were searched. A library of EGF fragments immobilized on cellulose was obtained using triazine condensing reagents. Experiments on the interactions with EGFR confirmed the high affinity of the selected peptide fragments. Biological tests on cells showed the lack of cytotoxicity of the EGF fragments. Selected EGF fragments can be used in various areas of medicine.


Assuntos
Fator de Crescimento Epidérmico , Peptídeos , Anticorpos , Celulose , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores ErbB/metabolismo
18.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338870

RESUMO

Amyloidosis involves the deposition of misfolded proteins. Even though it is caused by different pathogenic mechanisms, in aggregate, it shares similar features. Here, we tested and confirmed a hypothesis that an amyloid antibody can be engineered by a few mutations to target a different species. Amyloid light chain (AL) and ß-amyloid peptide (Aß) are two therapeutic targets that are implicated in amyloid light chain amyloidosis and Alzheimer's disease, respectively. Though crenezumab, an anti-Aß antibody, is currently unsuccessful, we chose it as a model to computationally design and prepare crenezumab variants, aiming to discover a novel antibody with high affinity to AL fibrils and to establish a technology platform for repurposing amyloid monoclonal antibodies. We successfully re-engineered crenezumab to bind both Aß42 oligomers and AL fibrils with high binding affinities. It is capable of reversing Aß42-oligomers-induced cytotoxicity, decreasing the formation of AL fibrils, and alleviating AL-fibrils-induced cytotoxicity in vitro. Our research demonstrated that an amyloid antibody could be engineered by a few mutations to bind new amyloid sequences, providing an efficient way to reposition a therapeutic antibody to target different amyloid diseases.


Assuntos
Doença de Alzheimer , Amiloidose , Anticorpos Monoclonais Humanizados , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Amiloide/metabolismo , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/uso terapêutico , Amiloidose/terapia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico
19.
J Chromatogr A ; 1718: 464673, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340457

RESUMO

The binding and molecular recognition between α-chain of human complement C3b (α-chain of C3b) and human plasminogen Kringle 5 (Kringle 5) were studied and explored by frontal chromatography and dynamics simulation in the combination of bio-specific technologies. The specific interaction between the α-chain of C3b and Kringle 5 was initially confirmed by ligand blot and ELISA (Kd = 4.243×10-6 L/mol). Furthermore, the binding determination conducted via frontal chromatography showed that the presence of a single binding site between them, with the binding constant of 2.98 × 105 L/mol. Then the molecular recognition by dynamics simulation and molecular docking showed that there were 9 and 13 amino acid residues respective in the Kringle 5 and α-chain of C3b directly implicated in the binding and the main stabilizing forces were electrostatic force (-55.99 ± 11.82 kcal/mol) and Van der Waals forces (-42.70 ± 3.45 kcal/mol). Additionally, a loop structure (65-71) in Kringle 5 underwent a conformational change from a random structure to an α-helix and a loop structure (417-425) in α-chain of C3b was closer to the molecular center, both of them were more conducive to the binding between them. Meanwhile, the involvement of the lysine binding site of Kringle 5 played an important role in the binding process. In addition, the erythrocyte-antibody complement rosette assay substantiated that the presence of Kringle 5 hindered the transportation of α-chain of C3b to antigen-antibody complex in a dose-dependent manner. These findings collectively indicated that the α-chain of C3b is very likely a receptor protein for Kringle 5, which provides a methodology for other similar investigations and valuable insights into expansion of the pharmacological effects and potential application of Kringle 5 in immune-related diseases.


Assuntos
Cromatografia , Fragmentos de Peptídeos , Plasminogênio , Humanos , Ligação Proteica , Sequência de Aminoácidos , Simulação de Acoplamento Molecular , Sítios de Ligação , Fragmentos de Peptídeos/metabolismo , Conformação Proteica
20.
Hypertension ; 81(5): 964-976, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362781

RESUMO

The renin-angiotensin system is the most important peptide hormone system in the regulation of cardiovascular homeostasis. Its classical arm consists of the enzymes, renin, and angiotensin-converting enzyme, generating angiotensin II from angiotensinogen, which activates its AT1 receptor, thereby increasing blood pressure, retaining salt and water, and inducing cardiovascular hypertrophy and fibrosis. However, angiotensin II can also activate a second receptor, the AT2 receptor. Moreover, the removal of the C-terminal phenylalanine from angiotensin II by ACE2 (angiotensin-converting enzyme 2) yields angiotensin-(1-7), and this peptide interacts with its receptor Mas. When the aminoterminal Asp of angiotensin-(1-7) is decarboxylated, alamandine is generated, which activates the Mas-related G-protein-coupled receptor D, MrgD (Mas-related G-protein-coupled receptor type D). Since Mas, MrgD, and the AT2 receptor have opposing effects to the classical AT1 receptor, they and the enzymes and peptides activating them are called the alternative or protective arm of the renin-angiotensin system. This review will cover the historical aspects and the current standing of this recent addition to the biology of the renin-angiotensin system.


Assuntos
Angiotensina II , Sistema Renina-Angiotensina , Sistema Renina-Angiotensina/fisiologia , Peptidil Dipeptidase A/metabolismo , Peptídeos , Angiotensina I/metabolismo , Fragmentos de Peptídeos/metabolismo , Renina , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...